
Exploiting Content Similarity to Improve Memory Performance in Large-Scale
High-Performance Computing Systems

Scott Levy
4th year Ph.D. student / Advised by Patrick G. Bridges

Department of Computer Science
University of New Mexico
Albuquerque, New Mexico

slevy@cs.unm.edu

I. MOTIVATION

As we consider building the next generation of extreme-
scale systems, many of the biggest challenges are related to
memory characteristics. In particular, overcoming challenges
related to resilience and memory bandwidth will require
innovative strategies for improving the performance of main
memory.

DRAM ECC failures are one of the most frequently ob-
served sources of node failure in large-scale distributed sys-
tems [1]. Because the rate at which failures occur increases
proportionally to the number of processors, larger, more
powerful systems will experience more frequent failures [2].
As a result, traditional approaches to fault tolerance (e.g.,
coordinated checkpoint/restart) may no longer be sufficient
to efficiently recover from these errors [3]. Moreover, power
concerns may exacerbate this problem as we consider de-
ploying low voltage memory chips that are more prone to
error [4].

Memory bandwidth limitations will restrict our ability to
fully exploit the increasingly powerful multicore processors
that will compose future systems [5]. Because processor
clock rates have plateaued, growth in total computational
power has been achieved by increasing the number of cores
per processor. However, the rate at which the number of
cores is growing is outstripping the rate at which memory
access speeds are increasing. As a result, the effective
memory bandwidth available to each core is decreasing over
time.

II. PROPOSED APPROACH

In this paper, we propose to exploit memory content
similarity to improve memory performance. We begin by
presenting several novel strategies that leverage memory
content similarity to improve system resilience and effective
memory bandwidth. Additionally, we seek to understand the
source of similarity in the memory of HPC applications.

A. Resilience

1) DRAM ECC Errors: When an uncorrectable ECC
error is detected in an x86 system, the memory controller
raises a Machine Check Exception (MCE) in the processor.

The consequences of raising an MCE vary by operating
system. Recent versions of Linux attempt to minimize the
impact of a MCE by adopting simple recovery strategies.
In the event that none of its recovery strategies is suc-
cessful, Linux poisons the hardware page and kills all of
the processes that had the faulted page mapped into their
address space [6]. In other operating systems (e.g., the Kitten
lightweight kernel [7], older versions of Linux), raising a
MCE simply crashes the node.

We can prevent some ECC DRAM errors from leading to
node failure by exploiting similarities in main memory. The
basic idea is that when a memory error occurs on a page that
is similar to one or more other pages in the address space
of an application, we can use the contents of the similar
page to reconstruct the contents of the faulted page without
needing to terminate the affected application.

2) Silent Data Corruption: Not all memory errors can be
corrected (or even detected) by ECC. Although soft errors
(e.g., those caused by cosmic rays) only rarely result in
multiple bit errors within a single block, the consequences
of silent data corruption are severe. For many undetected
errors, the only observable effect is that the application
produces an incorrect result [8]. Moreover, ECC requires
additional DRAM, which increases system cost and energy
consumption.

We can detect and potentially correct silent data corrup-
tion by exploiting memory content similarity. For example,
if we know that two pages are similar to each other, we
can periodically compare the contents of the pages to ensure
that the difference between the two remains the same. When
we detect a change in the difference between the two pages
without a modifying write to either page, then we know that
one of the two pages has been corrupted. If we know the
difference between three or more pages (e.g., three duplicate
pages), we can also potentially correct the error.

B. Memory Bandwidth

1) NUMA: In NUMA architectures, processors can ac-
cess not only their local memory but also the local memory
of other processors. However, accessing remote memory
is comparatively slow. We propose to leverage memory



content similarity to improve effective memory bandwidth
by replacing accesses to slow, remote memory with accesses
to similar fast, local memory.

2) Cache: One of the most established ways of reduc-
ing the impact of limited memory bandwidth is caching.
Storing frequently-used data in close, high-speed memory
conceals memory bandwidth limitations from the processor.
We propose to use memory content similarity to improve the
effective memory bandwidth of a processor by increasing
the cache hit rate. For example, if a memory request would
result in a cache miss but a cache line from a similar page
is resident in cache, we may be able to leverage memory
content similarity to satisfy the request from the cache
instead of going to memory.

C. Source of Memory Similarity

A growing body of evidence suggests that significant
similarity exists in the memory of HPC applications [9],
[10], [11]. Section III contains a brief summary of the data
that we have collected in support of this proposition. We
propose to examine the relationship in HPC applications
between regions of similarity in memory and application
structure. To this end, we have begun to collaborate with
experts on key HPC applications to correlate the data that
we have collected with the structure of their applications.

III. PRELIMINARY RESULTS

Our initial inquiry was to examine the viability of this ap-
proach by evaluating: (a) the prevalence of memory content
similarity in several important HPC applications; and (b) the
cost of exploiting similarity in these applications. We present
a synopsis of our data here; a more detailed discussion of
all of the data that we collected is available in [11].

A. Data Collection

We collected snapshots of the applications’ memory by
linking libmemstate against each of the target applica-
tions. libmemstate is a library that uses the MPI Profiling
layer to interpose itself in MPI calls made by the application.
It begins by intercepting the call to MPI Init and setting
a timed signal (SIGALRM). Each time the signal expires,
libmemstate reads the /proc/<pid>/maps file to
gather information about the application’s address space.
Based on the information it gathers, libmemstate writes
a copy of the address space to stable storage. Each snapshot
includes all of the application’s heap, stack and anonymous
memory.

B. Memory Content Overview

We examined the memory of the eight HPC applications
in Table I to ascertain the extent of memory content similar-
ity in HPC applications. We generated the data presented
in this paper by running each application using 64 MPI
ranks equally distributed across 8 nodes of a Cray XE6

supercomputer. We began our analysis by placing each page
in the address space of an application into one of four
categories:

• DUPLICATE PAGES : pages whose contents exactly
match one or more other pages and include at least
one non-zero byte.

• ZERO PAGES : pages whose contents are entirely zero.
• SIMILAR PAGES : pages that (a) are not duplicate

or zero pages; and (b) can be paired with at least
one other page in application memory such that the
difference between the two can be represented by a
cx bsdiff [21] patch that is smaller than a pre-
determined threshold.

• UNIQUE PAGES : pages that do not fall into any of the
preceding three categories.

Given this system of page categorization, Figure 1
presents the fraction of each application’s address space that
falls into each of these four categories. We produced the data
in this figure by increasing the patch size threshold for each
application until the patches occupied just less than 5% of
the application’s total memory.

 0

 20

 40

 60

 80

 100

A
M

G
2006

C
TH

IR
S

LA
M

M
P
S

S
A
M

R
A
I

H
P
C
C
G

phdM
esh

S
w
eep3D

P
e
rc

e
n
t 
o
f 
m

e
m

o
ry

 p
a
g
e
s

Duplicate Pages
Similar Pages

Zero Pages
Unique Pages

Figure 1. Page categorization within Rank 0 for each application. Each bar
represents the page categorization for the memory snapshot that contained
the smallest fraction of similar and duplicate pages. The total size of all of
the patches for each application is less than 5% of application memory.

The key observation we make is that the memory of each
of the applications is comprised of at least 32% similar
and duplicate pages. Moreover, the memory of four of the
applications (AMG, IRS, HPCCG and phdMesh) contain
more than 45% similar and duplicate pages.

C. Overhead
The overhead of exploiting memory content similarity

comes primarily from two sources: (a) memory to store
metadata; and (b) time to maintain metadata. The bulk of
the metadata that must be stored is patch data. For the data
presented in this paper, the patch data would occupy less
than 5% of application memory.



ASC Sequoia
Marquee
Performance
Codes [12]

AMG A parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids [13].

IRS Implicit Radiation Solver. Solves the radiation transport equation by the flux-limited diffusion approximation using an
implicit matrix solution [14].

DOE Produc-
tion
Applications

CTH A multi-material, large deformation, strong shock wave, solid mechanics code [15]
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator. A classical molecular dynamics simulator [16].

Mantevo
Mini-
Applications
[17], [18]

HPCCG Designed to mimic the finite element generation, assembly and solution for an unstructured grid problem.

phdMesh Parallel Heterogeneous Dynamic Mesh. An application designed to mimic the contact search applications in an explicit
finite element application.

Miscellaneous
Applications

SAMRAI Structured Adaptive Mesh Refinement Application Infrastructure. Designed to enable the application of structured
adaptive mesh refinement to large-scale multi-physics problems [19].

Sweep3D Solves a 1-group time-independent discrete ordinates (Sn) 3D cartesian (XYZ) geometry neutron transport problem.
[20]

Table I
A BRIEF SUMMARY OF HPC APPLICATIONS USED

Application
Changed Changed Changed Changed Changed
1+ Times 1 Time 2 Times 3 Times 4+ Times

AMG2006 20.2 % 12.0 % 3.8 % 3.0 % 1.5 %
CTH 39.1 % 6.5 % 3.5 % 14.1 % 15.0 %
IRS 31.7 % 17.2 % 0.1 % 0.0 % 14.4 %

LAMMPS 11.0 % 0.2 % 0.1 % 0.0 % 10.7 %
SAMRAI 82.2 % 16.0 % 6.9 % 35.9 % 23.4 %
HPCCG 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
phdMesh 6.9 % 1.7 % 0.4 % 0.3 % 4.4 %
Sweep3D 2.5 % 1.4 % 0.6 % 0.0 % 0.5 %

Table II
MODIFICATION BEHAVIOR OF THE PAGES IN THE MEMORY OF RANK 0

THAT ARE EVER CATEGORIZED AS SIMILAR OR DUPLICATE.

The magnitude of the temporal overhead will depend
largely on how frequently similar and duplicate pages are
modified. Each time a page that has been classified as
similar or duplicate is modified, we no longer know whether
the page is similar or duplicate. As a result, we need to
update our metadata to account for this change. The more
rapdily that similar and duplicate pages change, the higher
the temporal overhead of managing metadata will be.

To get a sense of how frequently similar and duplicate
pages change, we compared the memory contents across the
sequence of snapshots we collected for each application. By
hashing each page, we were able to determine whether a
given page in the application’s virtual address space changed
from one snapshot to the next.

This table shows the modification behavior for all of
the pages in application memory that are ever classified as
duplicate or similar given a 128-byte patch size threshold.
The data in this table suggest that for most applications, a
substantial majority of the similar and duplicate pages are
either read-only/read-mostly or are written to without being
modified [22]. For six of the eight applications (AMG, IRS,

LAMMPS, HPCCG, phdMesh and Sweep3D), more than
85% of the similar and duplicate pages are modified either
once or not at all.

IV. RELATED WORK

The technique of de-duplication has been used in virtual-
ization, [23], [24], [25], HPC systems [9], [10], and in stor-
age/backup applications [26]. However, to our knowledge,
our proposed application of memory content similarlity
to problems that are not directly related to data storage
requirements is novel. Moveover, we are the first to consider
similar memory in HPC applications.

In Linux, the machine check exception handler attempts
to absorb faults that occur in memory that is not owned by
a running process or can be read from a backing store [6].
However, we are aware of no work that allows a system
to withstand an ECC DRAM error without re-launching the
affected applications.

Recent work on improving memory bandwidth demands
has largely focused either compiler techniques for efficient
cache reuse [27] or data compression techniques that allow
more application data to be delivered to the processor in
fewer cache lines [28]. In [29] the authors propose a caching
strategy for reusing duplicate cache lines in the context of
multi-execution. We propose to exploit similarity as well as
duplication to improve cache behavior.

Although significant data has been collected on de-
duplication, there has been little that explores the source
of the similarity. In [30], the authors examine the source of
page sharing for several virtualization workloads. A similar
evaluation has not been performed for HPC applications.

REFERENCES

[1] A. A. Hwang, I. A. Stefanovici, and B. Schroeder,
“Cosmic rays don’t strike twice: understanding the nature



of DRAM errors and the implications for system design,”
in Proceedings of the seventeenth international conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’12. New York, NY,
USA: ACM, 2012, pp. 111–122. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150989

[2] B. Schroeder and G. A. Gibson, “A large-scale study of
failures in high-performance computing systems,” in Proceed-
ings of the International Conference on Dependable Systems
and Networks (DSN2006), Jun. 2006. [Online]. Available:
http://www.pdl.cmu.edu/PDL-FTP/stray/dsn06 abs.html

[3] K. Ferreira, R. Riesen, J. Stearley, J. H. L. III, R. Old-
field, K. Pedretti, P. Bridges, D. Arnold, and R. Brightwell,
“Evaluating the viability of process replication reliability
for exascale systems,” in Proceedings of the ACM/IEEE
International Conference on High Performance Computing,
Networking, Storage, and Analysis, (SC’11), Nov 2011.

[4] V. Chandra and R. Aitken, “Impact of technology and volt-
age scaling on the soft error susceptibility in nanoscale
cmos,” in Defect and Fault Tolerance of VLSI Systems, 2008.
DFTVS’08. IEEE International Symposium on. IEEE, 2008,
pp. 114–122.

[5] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and Y. Soli-
hin, “Scaling the bandwidth wall: challenges in and avenues
for CMP scaling,” in ACM SIGARCH Computer Architecture
News, vol. 37, no. 3. ACM, 2009, pp. 371–382.

[6] A. Kleen, “mcelog: memory error handling in user space,” in
Proceedings of Linux Kongress 2010, Nuremburg, Germany,
September 2010.

[7] Sandia National Laboratory, “Kitten lightweight kernel,”
https://software.sandia.gov/trac/kitten, March 10 2012.

[8] C. Lu and D. Reed, “Assessing fault sensitivity in MPI appli-
cations,” in Proceedings of the 2004 ACM/IEEE conference
on Supercomputing. IEEE Computer Society, 2004, p. 37.

[9] S. Biswas, B. R. d. Supinski, M. Schulz, D. Franklin,
T. Sherwood, and F. T. Chong, “Exploiting data similarity
to reduce memory footprints,” in Proceedings of the
2011 IEEE International Parallel & Distributed Processing
Symposium, ser. IPDPS ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 152–163. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2011.24

[10] L. Xia and P. A. Dinda, “A case for tracking and
exploiting inter-node and intra-node memory content sharing
in virtualized large-scale parallel systems,” in Proceedings of
the 6th international workshop on Virtualization Technologies
in Distributed Computing, ser. VTDC ’12. New York,
NY, USA: ACM, 2012, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/2287056.2287061

[11] S. Levy, K. B. Ferreira, P. G. Bridges, A. P. Thompson, and
C. Trott, “An Examination of Content Similarity within the
Memory of HPC Applications,” Sandia National Laboratory,
Tech. Rep. SAND2013-0055, 2013.

[12] Lawrence Livermore National Laboratories, “ASC Sequoia
Benchmark Codes,” https://asc.llnl.gov/sequoia/benchmarks,
August 2009.

[13] V. Henson and U. Yang, “BoomerAMG: A parallel alge-
braic multigrid solver and preconditioner,” Applied Numerical
Mathematics, vol. 41, no. 1, pp. 155–177, 2002.

[14] Lawrence Livermore National Laboratories, “IRS:
Implicit Radiation Solver 1.4 Build Notes,”
https://asc.llnl.gov/computing resources/purple/archive/
benchmarks/irs/irs.readme.html.

[15] J. McGlaun, S. Thompson, and M. Elrick, “CTH: a three-

dimensional shock wave physics code,” International Journal
of Impact Engineering, vol. 10, no. 1, pp. 351–360, 1990.

[16] Sandia National Laboratories, “The LAMMPS molecular
dynamics simulator,” http://lammps.sandia.gov, April 2010.

[17] ——, “Mantevo,” http://software.sandia.gov/mantevo.
[18] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-

bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving perfor-
mance via mini-applications,” Sandia National Laboratory,
Tech. Rep. SAND2009-5574, 2009.

[19] Lawrence Livermore National Laboratories, “SAMRAI,”
https://computation.llnl.gov/casc/SAMRAI/index.html.

[20] Los Alamos National Laboratories, “Sweep3d,” http://www.
c3.lanl.gov/pal/software/sweep3d/sweep3d readme.html,
1999.

[21] A. Tuininga, “cx bsdiff,” http://starship.python.net/crew/
atuining/cx bsdiff/index.html, February 2006.

[22] K. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and
D. Arnold, “libhashckpt: hash-based incremental checkpoint-
ing using GPUs,” Recent Advances in the Message Passing
Interface, pp. 272–281, 2011.

[23] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum,
“Disco: running commodity operating systems on scalable
multiprocessors,” ACM Trans. Comput. Syst., vol. 15,
no. 4, pp. 412–447, Nov. 1997. [Online]. Available:
http://doi.acm.org/10.1145/265924.265930

[24] C. A. Waldspurger, “Memory resource management in
VMware ESX server,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 181–194, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844146

[25] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C.
Snoeren, G. Varghese, G. M. Voelker, and A. Vahdat,
“Difference Engine: Harnessing memory redundancy
in virtual machines,” Commun. ACM, vol. 53,
no. 10, pp. 85–93, Oct. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1831407.1831429

[26] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proceedings
of the 6th USENIX Conference on File and Storage
Technologies, ser. FAST’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 18:1–18:14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1364813.1364831

[27] C. Ding and K. Kennedy, “Improving effective bandwidth
through compiler enhancement of global cache reuse,” J.
Parallel Distrib. Comput., vol. 64, no. 1, pp. 108–134,
Jan. 2004. [Online]. Available: http://dx.doi.org/10.1016/j.
jpdc.2003.09.005

[28] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix
computations via data compression,” in Proceedings of the
20th annual international conference on Supercomputing,
ser. ICS ’06. New York, NY, USA: ACM, 2006, pp.
307–316. [Online]. Available: http://doi.acm.org/10.1145/
1183401.1183444

[29] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood,
and F. Chong, “Multi-execution: multicore caching for data-
similar executions,” in ACM SIGARCH Computer Architec-
ture News, vol. 37, no. 3. ACM, 2009, pp. 164–173.

[30] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman, “An
empirical study of memory sharing in virtual machines,”
in Proceedings of the 2012 USENIX conference on Annual
Technical Conference. USENIX Association, 2012, pp. 25–
25.


